1

12 Schnitt von Parabeln mit Geraden, Parabeltangente

Vorbereitende Aufgabe:

Für welchen Wert des Parameters q hat die quadratische Gleichung $x^2 + 6qx - q = 0$ genau eine Lösung?

Eine quadratische Gleichung hat genau dann eine einzige Lösung, wenn ihre Diskriminante den Wert 0 hat.

$$D = 36q^2 + 4q = 4q(9q - 1) = 0$$

$$q = 0$$
 $x = 0$ ist die einzige Lösung

$$q = 0$$
 $x = 0$ ist die einzige Lösung $q = -\frac{1}{9}$ $x = \frac{1}{3}$ ist die eeinzige Lösung

Aufgabe:

Es sind die Schnittpunkte der

Parabel p:
$$y = \frac{1}{4}x^2$$
 mit der

Geraden g:
$$y = \frac{3}{2}x + q$$

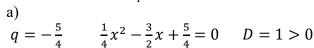
für die folgenden Parameterwerte zu bestimmen:

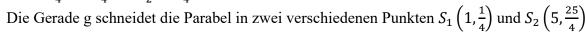
a)
$$q = -\frac{5}{4}$$
 b) $q = -\frac{9}{4}$ c) $q = -4$

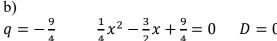
Die Koordinaten der gemeinsamen Punkte erfüllen sowohl die Geraden als auch die Parabelgleichung:

y:
$$\frac{1}{4}x^2 = \frac{3}{2}x + q$$
 oder $\frac{1}{4}x^2 - \frac{3}{2}x - q = 0$

Diese quadratische Gleichung hat die Diskriminante $D = \frac{9}{4} + q$







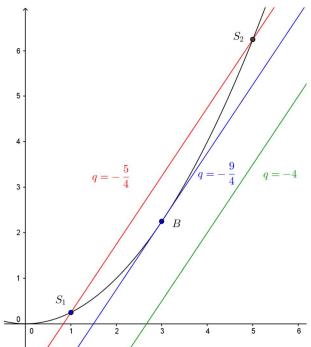
 $q = -\frac{9}{4}$ $\frac{1}{4}x^2 - \frac{3}{2}x + \frac{9}{4} = 0$ D = 0Die quadratische Gleichung $(x - 3)^2 = 0$ hat die Lösung x = 3

Die Gerade berührt die Parabel im Punkt $B\left(3,\frac{9}{4}\right)$. g ist die Parabeltangente im Punkt B.

c)

$$q = -4$$
 $\frac{1}{4}x^2 - \frac{3}{2}x + 4 = 0$ $D = -\frac{7}{4} < 0$

Die Gleichung hat keine reelle Lösung. Die Gerade meidet die Parabel.



Allgemein:

Das Problem, die Schnittpunkte einer quadratischen Parabel mit einer Geraden

g: y = mx + q zu schneiden, führt auf eine quadratische Gleichung mit der

Diskriminante D. Es können damit die folgenden Fälle auftreten:

D > 0 Die Gerade schneidet die Parabel in zwei verschiedenen Punkten.

D = 0 Die Gerade berührt die Parabel, sie ist Tangente

D < 0 Die Gerade meidet die Parabel

Bemerkungen:

Eine entsprechende Aussage gilt auch für die Kegelschnitte Ellipse (insbesondere auch Kreis) und Hyperbel.

Auch im Ausnahmefall der Parabelachse ergibt sich genau ein Schnittpunkt.

Übungsaufgabe:

Wie lautet die Gleichung der Tangente t an die Parabel p: $y = -\frac{1}{2}x^2 - x + 3$, die zur Geraden g: y = -2x parallel ist?

Ansatz für die Tangentengleichung: y = -2x + q.

Q ist so zu bestimmen, dass die Gleichung $-\frac{1}{2}x^2 - x + 3 = -2x + q$ oder

 $-\frac{1}{2}x^2 + x + 3 - q = 0$ genau eine Lösung hat.

Lösung:
$$q = \frac{7}{2}$$
, $B\left(1, -\frac{3}{2}\right)$

Die Steigung der Parabeltangente

Wählen wir das Koordinatensystem so, dass der Parabelscheitel im Ursprung liegt, dann kann jede quadratische Parabel mit der Gleichung $y = ax^2$ beschrieben werden.

Für die Schnittpunkte der Parabel mit der Geraden g: y = mx + q gilt dann:

$$ax^2 - mx - q = 0$$

Diese quadratische Gleichung hat die Diskriminante

$$D = m^2 - 4aq$$

Ist g Tangente, dann verschwindet die Diskriminante d.h. es gilt:

$$D = m^2 - 4aq = 0$$

Mit der quadratischen Auflösungsformel ergibt sich damit die x-Koordinate des

Berührungspunkts zu

$$x_B = \frac{m}{2a}$$

Löst man diese Gleichung nach m auf, so erhält man für die Steigung der Parabeltangente den Wert

$$m = 2ax_B$$

Wird dieser Wert in die Diskriminante eingesetzt, so erhält man

$$m^2 - 4aq = (2ax_B)^2 - 4aq = 4a(ax_B^2 + q) = 0$$

und daraus wegen a ≠ 0 den y-Achsenabschnitt q zu

Satz:

Die Tangente an die Parabel $y = ax^2$ hat im Parabelpunkt $P(x_B, y_B)$ die Gleichung $y = 2ax_B \cdot x - ax_B^2$

$$q = -ax_B^2$$

Bemerkung:

Das Ergebnis bedeutet, dass die Scheiteltangente eine Parabeltangente halbiert.

Das geometrische Problem in einem beliebigen die Tangente an eine Kurve zu bestimmen wird in der später behandelten Analysis → **Differentialrechnung** gelöst.